The case for data-less marine resource management: examples from tropical nearshore finfisheries

R.E. Johannes

Managing most marine finfisheries to achieve optimum yields is an unattainable dream. Protecting these resources from serious depletion through precautionary management seems the only practical option. But even this is of limited application if we demand scientific data for each managed fishery. There are too few researchers to do the work and, in any event, such research would usually not be cost-effective. Thus, we need not merely precautionary management; we need data-less management.

Two major problems limit our ability to manage most marine finfisheries. The first is that research generally does not provide us with sufficient knowledge of their dynamics to enable us to manage them so as to achieve any kind of optimum yield, whether it be biological, economic or social. Nature is too complex and too variable. The notion that 'we'll get it right if you'll just let us do some more research' has been laid to rest.

Tropical nearshore marine fisheries provide an especially bleak example of the impotence of classical fisheries management. No other fisheries involve so many species, such complex and diverse habitats, so many fishers, gear types, landing sites and distribution channels per unit of catch. In the face of such Gordian complexity there is little consensus among fisheries biologists concerning even the basic dynamics of such fisheries. Their management, which has been characterised as 'dismal', is far from achieving any kind of optimality. Managing fisheries sub-optimally, however, is preferable to not managing them at all. Whereas suboptimal management produces results that are, by definition, less than ideal, the absence of management leads almost inevitably to severe depletion and commercial extinction of exploited fish stocks'.

Precautionary management

We are entering an era of precautionary marine resource management - management that greatly reduces the likelihood of stock collapse or severe environmental degradation. The main aim of precautionary management is not to control the production of living resources, but simply to protect them, to maintain their viability. Even in the less data-demanding context of precautionary management, however, our scientific limitations are still severe because of a second problem so basic and undramatic that it seems to have been completely ignored. The implicit assumption seems very common among marine biologists and marine resource managers that quantitative information about a natural resource is essential for any kind of management. If this assumption were true, however, it would mean that even precautionary management would be impossible in many thousands of square kilometers of heavily exploited tropical marine communities. As Jennings and Polunin have recently pointed out, 'vast areas of tropical reef have not been studied'. The same is true of tropical seagrass, mangrove and soft-bottom communities. We do not have the resources to collect and process management data for the great majority of these communities - nor will we in the foreseeable future.

Nowhere is this more apparent than in the western Pacific and adjacent Southeast Asia, in countries like the Solomon Islands, Papua New Guinea, the Philippines and Indonesia. Here there are tens of thousands of kilometers of tropical coastline occupied by millions of people who depend for their livelihood on their nearshore fisheries. These countries cannot afford such research. And, even if they could, it would, in most cases, be grossly cost-ineffective.

In coral reefs, under such circumstances, underwater censuses are often employed to obtain rough appraisals of the status of its populations. It takes two people one day to carry out underwater visual censuses of coral reef fish sufficient to get a statistically useful data set on fish abundance along a 1-km strip of fringing reef. Consider the implications of this for the management of, say, Indonesia's coral reefs. Of the 71000 km coastline of this country, five-eighths is fringed by coral reefs. It would thus take 400 person-years to complete one transect survey of fish on the country's fringing reefs. Subsampling could, of course, be employed to reduce this effort. But even if we randomly sampled, say, ten percent of the coastline, it would still take 40 person-years. And this would yield merely a snapshot of fish abundance - and only in the shallowest and most accessible portion of the country's reefs. It would thus provide only a tiny fraction of the kind of data usually considered necessary for management.

Another class of approaches, developed in recent years in recognition of the impracticality of getting comprehensive information for natural resource management in reasonable time and at reasonable cost, is rapid appraisal techniques, some of which have been employed in tropical fishing communities. During such assessments, interdisciplinary teams quickly characterize fishing communities and the coastal ecosystems on which they depend. No specific time has been specified for such assessments. But, based on my reading of relevant literature, a conservative estimate of the mean time for professionals to complete a rapid
assessments would be three person-months. There are more than 7000 coastal fishing villages in Indonesia. To carry out such rapid assessments in each would thus take more than 1700 person-years. Subsampling would be of questionable value, since coastal fishing villages differ so greatly and unpredictably in the social, political, educational, environmental and ecological characteristics that define the options of their fishers. These short-cut methods are instructive, but they are not the solution to our problem. There is not enough time, money nor trained personnel to employ them widely - nor will there be in the foreseeable future.

Data-less management
In situations like this we need not only the simplifications afforded by precautionary management. We need the much greater simplifications of what might be called data-less management - that is, management carried out in the absence of the data required for the parameterization and verification of models that predict effects of various management actions with useful statistical confidence limits. There is nothing new about data-less management, except perhaps the name. Some tropical fishing cultures, for example, have been doing it for a very long time. In some Pacific island groups almost all of the basic fisheries conservation measures that Europeans developed only in the past century, were already in use centuries ago - closed areas, closed seasons, size restrictions, restricted entry - all without data.

Data-less management does not mean management without information. Even in the remotest unresearched areas of, say, Irian Jaya, or the Andaman Islands, the information baseline is by no means zero. It comes from two sources. The first consists of the knowledge gained from research on other, similar systems. The second source (in all but unexploited regions, of which there are increasingly few) is the knowledge possessed by fishers concerning their local marine environments and fisheries. This knowledge can be extremely useful for management purposes; in some areas it has proven to be encyclopedic.

I do not want to imply, however, that tropical fishing communities can be expected to 'go it alone' in managing their marine resources. Even where traditional management regimes and local knowledge remain strong, villagers are often not equipped to respond to today's altered circumstances. The introduction of cash economies, rapid population growth, commercial fishing, new export markets, the use of new fishing gears and faster boats have all brought new management challenges with which traditional arrangements and indigenous knowledge are not always able to cope unaided. Villagers may not understand the need for certain types of management. Or, if they do, they may not know how to formulate plans to address that need effectively.

Two examples of indigenous data-less management
The first example involves groupers (serranids). Typically, they constitute roughly ten percent of total coral reef finfish yields. They are among the most endangered of reef fish. In 1996, 21 species of grouper were proposed for inclusion on the IUCN Red List as vulnerable or endangered - three of them critically endangered. The commercial extinction of increasing numbers of grouper stocks has been described in the past few years, especially in the Caribbean, but also in some Pacific Islands. These stocks dwindled and disappeared because they were unprotected, not because they were uncontrolled.

We recently completed a research protection groupers in Palau to determine if data on spawning aggregation sizes would enable us to design a management program that improved upon the basic data-less management approach already operating in Palau, which consisted simply of closing the grouper fishery during the peak spawning months. It was a regulation that was specifically requested of the Palauan government by Palauan fishermen, who patterned it on their own traditional management methods, and who argued the need for it based on their observations that some grouper aggregations had been fished out, while others were declining alarmingly.

Our results enabled us to improve upon Palau's existing data-less grouper management regime a little. But it yielded no fundamental improvements; we found that statistically rigorous monitoring would not enable us to detect stock declines clearly attributable to fishing pressure - or stock increases clearly due to management - in timeframes useful for rigorous management. There was too much interannual variation in aggregation sizes that was un-related to fishing pressure or management measures, but instead resulted from un-determined 'natural factors'. Nature, once again, proved too variable.

In the mid 1980s. before our research on grouper spawning aggregations, an aggregation that fed Palauans for centuries was wiped out in just three years of intensive fishing. It would have been easy to prevent the collapse of this aggregation - without previous data - simply by implementing a closed season, as was subsequently done for Palau's other grouper spawning aggregations.

The second example is from another Pacific Island country, Vanuatu. Here, village-based marine conservation experienced a remarkable upsurge beginning in 1990 when the Fisheries Department's village-based trochus management program began. In a handful of Vanuatu's hundreds of fishing villages, the Department taught villagers the principles of trochus management - basically that stocks should be harvested about once every three years and the fishery closed during the intervening periods. These villagers accepted the Department's advice. According to them, the results were highly successful.

Word of their successes soon spread to other villages that had not been visited by the Fisheries Department. And within fewer than four years many villagers were, for the first time, managing their trochus stocks. Moreover, the practice was so enthusiastically received that many villages also began to implement controls on fishing for other species, finfish, lobsters, octopus and so forth. Within four years 26 of the 27 villages I surveyed had implemented new fishing controls.
The Vanuatu Fisheries Department's modest efforts in a few villages had thus been favored by a large multiplier effect - all without data other than that possessed by the Department concerning trochus growth rates for the general region and that obtained by the villagers themselves in the form of increased income associated with their trochus management (Fong recently reported a similar rapid spreading of marine conservation measures beyond the villages initially targeted for cooperative management by the Fiji Fisheries Department).

Vanuatu fishing villages are carrying out, in essence, an indigenous version of what has come in the past decade to be called adaptive management - that is, management by trial and error. This kind of experimentation, while not scientific according to fashionable neopositivist definitions, nevertheless plays a major role in the real history of fisheries research. For centuries before marine biologists appeared on the scene, fishers had been experimenting not only with fishing and navigating gear and methods, but also with fisheries management methods. Our textbooks, however, read as if fisheries management research began only in the late 19th century.

Practical measures

I am not implying here that we should do away with quantitative research. We must obtain detailed quantitative information in some areas. The current research on the design, operation and consequences of marine protected areas (MPAs) is a good example. Many developing countries wanting MPAs cannot afford to carry out comprehensive research for all, or even the majority of them. Sound quantitative research in a few, however, provides vital information and experience that can be applied judiciously in similar areas where such research is impractical. Regional and international agencies can play an important role in facilitating such research.

Many marine researchers and resource managers have not really considered the need for data-less management; it involves simplification that goes beyond anything that have been taught. Management not preceded by conventional research or followed by scientific monitoring may verge, to some people, on heresy. But the time is overdue for us to consider carefully the management objectives and controls that are practical for threatened marine resources for which few or no data are, or will be, available. In focusing here on data-less management I have deliberately chosen, for ease of discussion, a scenario that contrasts in the greatest extreme with the ideal of management based on 'enough data'. Many management situations will, of course, fall between these two extremes; that is, in the 'data-poor' category. Indeed, all tropical nearshore finfisheries management areas for which there are any data fall into this category.

I have given examples of how data-less or data-poor management can work in a particular set of fisheries, those of nearshore tropical waters. With the exception of mesh size restrictions, the approaches I have suggested are not appropriate to highly mobile fish stocks. Neither are they easily applied in regions where local control over the fishing grounds is absent. The data-less management measures implemented in Palau and Vanuatu would have been quite impractical in the absence of government recognition and support of local marine tenure. Its absence in some other countries in Southeast Asia and elsewhere, and the unwillingness of their governments to recognize its critical significance, is often the biggest impediment to effective fisheries management in these areas - rather than lack of data on their marine resources.

Fruits,"not roots
Conventional biological training has focused our attention so single-mindedly on the rigorous quantitative description of marine resources before committing ourselves to managing them, that we are liable to feel guilty if we diverge from this track - and worse still, may even criticize others who do so. But when vital resources are rapidly degrading, as are coral reefs and other nearshore tropical habitats around the world, we often have neither the time nor the resources for such data-gathering. The choice is not between giving perfect or imperfect advice to managers. It is between giving imperfect advice or none at all.

Data-less and data-poor management are, under the circumstances, not just valid alternatives. They are an imperative. It may be argued that such activities are not science. But surely this is immaterial. Doing them well will not be easy, and success will depend heavily on good scientists helping fishing communities and government management agencies to plan objectives and controls.

In most instances, fisheries management is carried out without the data that fisheries textbooks and graduate schools teach us are essential for the purpose. If such management is judged on the basis of its data underpinnings, it will be judged poorly. But this criterion is inappropriate. Management should be judged by its fruits, not its roots And, as stated earlier, no data are needed to assert with confidence that precautionary, data-less or data-poor management will perform better on average than the only real alternative - no management at all. Here, the key management question should not be ‘what data do we need to make sound management decisions?’ but rather, ‘what are the best management decisions to make when such data are unobtainable?’ We must decide carefully, but we cannot afford to wait. For if we do, we can be gloomily confident that the collapse of increasing numbers of unmanaged fisheries is not only inevitable, but also, in many cases, imminent.

Acknowledgements
Thanks to Bruce Hatcher, Paul Dayton, Geoff Kesteven, Bob Gillett, Tony Koslow, Yvonne Sadovy, Chuck Birkeland and Tim Adams for helpful comments on an earlier draft of this paper.

References
5 Coral reef fisheries stock assessment, Rev. Fish Biol, Fisheries 3, 241-285
18 Johannes, R.E. Government-supported village-based management of marine resource in Vanuatu, Ocean Coastal Manage. (in press)


